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ABSTRACT The Schubert calculus for GyB can be com-
pletely determined by a certain matrix related to the Kostant
polynomials introduced in section 5 of Bernstein, Gelfand, and
Gelfand [Bernstein, I., Gelfand, I. & Gelfand, S. (1973) Russ.
Math. Surv. 28, 1–26]. The polynomials are defined by van-
ishing properties on the orbit of a regular point under the
action of theWeyl group. For each element w in theWeyl group
the polynomials also have nonzero values on the orbit points
corresponding to elements which are larger in the Bruhat
order than w. The main theorem given here is an explicit
formula for these values. The matrix of orbit values can be
used to determine the cup product for the cohomology ring for
GyB, using only linear algebra or as described by Lascoux and
Schützenberger [Lascoux, A. & Schützenberger, M.-P. (1982)
C. R. Seances Acad. Sci. Ser. A 294, 447–450]. Complete proofs
of all the theorems will appear in a forthcoming paper.

Section 1. Introduction

Let G be a semisimple Lie group, H be a Cartan subgroup, W
be its corresponding Weyl group with generators s1, s2, . . . sn,
and B be a Borel subgroup. Let R 5 C[h*] be the algebra of
polynomial functions on the Cartan subalgebra h. Fix a regular
element o[ h such that ai(o) is a positive integer, for all simple
roots ai. Any Weyl group element v acts on the right on o by
the action on the Cartan subalgebra. We define the following
interpolating polynomials by their values on the orbit of o.
Definition: The Kostant polynomial Kw is an element of R of

degree l(w) (nonhomogeneous) such that

Kw~ov! 5 H1 v 5 w
0 l~v! # l~w! and v Þ w. [1.1]

Kw is unique modulo the ideal of all elements of R which vanish
on the orbit of o under the Weyl group action.
These polynomials were defined originally by Kostant and

appear in theorem 5.9 of ref. 1 for the finite case; they were
later generalized by Kostant and Kumar in ref. 2, denoted
jw

21
in their notation. In the case G is SLn, the Kostant

polynomials are the double Schubert polynomials (multi-
plied by a scalar) introduced by Lascoux and Schützenberger
(3); see also ref. 4.
The object of study for this announcement is not precisely

the Kostant polynomials themselves but instead the values of
the Kostant polynomials on the points in the orbit of o under
the Weyl group action. From the definition of Kw, we know Kw
(ov) is 0 if l(v) # l(w) and v Þ w. However, the orbit values
Kw(ov) if l(v) $ l(w) are not specified (though completely
determined). The main result of this paper, stated in Theorem

2, is an explicit formula for computing these orbit values,
namely

Kw~ov! 5
1

pw
O

bi1bi2 z z z bik[R~w!

P
j51

k

sb1sb2 z z z s~bij21!
abij~o!, [1.2]

where b 5 b1b2 z z z bp is any fixed reduced word for v, R(w) is
the set of all reduced words for w, and the sum is over all
sequences 1 # i1 , i2 , . . . , ik # p such that bi1bi2 z z z bik [

R(w). The scalar factor pw
21 appears to normalize Kw(ow) 5 1;

see Section 4 for the definition. This formula is independent of
the choice of reduced word for v, and it exhibits the strong
connection between the Kostant polynomials, the Schubert
calculus, and the Bruhat order. In Section 5, we show how the
matrix of orbit values is related to the cup product in the
cohomology ring for the flag manifold GyB, following ref. 2.
In fact, the cup product can be determined simply by studying
the vectors of orbit values.
We begin with a review of a few results from the renowned

paper by Bernstein, Gelfand, and Gelfand (1). In Section 3, the
nil-Coxeter algebra is introduced to prove that the orbit value
formula is independent of the choice of reduced word. The
explicit formula for the orbit values is stated as a theorem and
proved in Section 4. Finally, in Section 5 our approach to
computing the connection coefficients in the cohomology ring
for GyB using vectors of the orbit values is outlined.
Complete proofs of all the statements in this announcement

will appear in a forthcoming paper. Please contact the author
for the expected publication date.

Section 2. Divided Difference Equations

The divided difference equations defined by Bernstein, Gel-
fand, and Gelfand are used to recursively compute the Schu-
bert classes, starting from the unique Schubert class of codi-
mension 0, and working up to higher codimension. In this
section we show that these operators also act nicely on the
Kostant polynomials. The divided difference equations for
Kostant polynomials also lead to a recursive method for
computing the vector of orbit values for these polynomials.
Recall that we have defined R to be the ring of polynomials

over the Cartan subalgebra,C[h*]. Let a1, a2, . . . , an be simple
roots in the root system D, which is contained in the ambient
vector space with a symmetric bilinear form (a, b) which is
positive definite over the real span of the roots. Let D1 (D2)
be the positive roots (negative roots) with respect to this choice
of simple roots. The generators s1, s2, . . . , sn of W are the
reflections over the hyperplane perpendicular to the corre-
sponding simple roots. The reflections act on vectors v [ V by
si(v) 5 v 2 ^v, ai&ai where
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^a, b& 5
2~a, b!

~b, b!
. [2.1]

For each 1 # i # n, the divided difference operator ­i : R 3
R acts on f [ R by‡

­i f 5
f 2 si f

2ai
. [2.2]

Let I be the ideal generated by the Weyl group invariants of
positive degree. The action of the divided difference operators
preserves I. Hence, each ­i acts on the quotient RyI as well. If
a : H*(GyB, Q) 3 RyI is the Borel isomorphism, let Sw, the
Schubert class of w, be the image of the Schubert cycle in
H*(GyB, Q) corresponding to w0w under this map, where w0
is the longest element in the Weyl group.
PROPOSITION 2.1 (ref. 1, theorems 3.14 and 3.15). The

Schubert classes Sw [ RyI have the property

­iSw 5 HSwsi
l(w) , l(wsi)

0 l(w) . l(wsi).
[2.3]

Furthermore, the Schubert class Sw0
is given by

Sw0 5
(21)uWu

uWu P
g[D1

g(mod I). [2.4]

The Schubert classes and the highest homogeneous compo-
nent of the Kostant polynomials are the same modulo I up to
a constant. Below the correct statement is given in our
notation.
PROPOSITION 2.2 (ref. 1, theorem 5.9). Let Kw

0 be the form of
highest degree in Kw. Then, the image of Kw0 in RyI is equal to

P
g[D1ùwD2

~g~o))21Sw. [2.5]

The next theorem shows that the divided difference oper-
ators satisfy a modified recursive formula. This theorem has
also been given by Kostant and Kumar in ref. 2 for the case of
an arbitrary Kac–Moody Lie algebra.
THEOREM 1. For w[W the divided difference operator ­i acts

on Kw as follows

­iKw 5 5 Kwai

ai(owsi)
l(w) , l(wsi)

0 l(w) . l(wsi).
[2.6]

Proof: The proof follows from evaluating ­iKw at the orbit
points of length less than or equal to the length of wsi. h
COROLLARY 2.3. The orbit values Kw(ov) can be computed

recursively from the top down. Namely, Kw0(ov) is 1 if v5 w0 and
0 otherwise. If w Þ w0 there exists an i such that l(w) , l(wsi),
let u be wsi. Then for any v [ W,

Kw(ov) 5 ­iKu(ov) 5
Ku(ov) 2 Ku(ovsi)

2ai(ov)
ai(ow). [2.7]

Corollary 2.3 gives an algorithm to compute the values
Kw(ov). We will use this corollary in Section 4 to prove the
formula for orbit values.

Section 3. The Nil-Coxeter Algebra

In this section, we allowW to be the Weyl group for an arbitrary
Kac–Moody Lie algebra. Let! 5 !W be the nil-Coxeter algebra
for W. In other words, if W is generated by s1, s2, . . . , sn with
relations given by (sisj)mij 5 1, then! is generated as an algebra
over R 5 C[h*] by u1, u2, . . . , un with the relations

ui2 5 0. [3.2]

As a vector space over R, a basis for ! is given by {uw : w [
W}, where uw represents the equivalent products ua1ua2 z z z uap
for any a1a2 z z z ap [ R(w). The Weyl group acts on! by acting
on the elements in R, and the generators ui are fixed by all
elements in the Weyl group.
Following the notation of Fomin and Kirillov (section 1 of

ref. 5), we define the Yang–Baxter operators hi: R 3 ! by

hi~x! 5 exui 5 1 1 xui. [3.3]

The relations among the Weyl group generators impose rela-
tions on the hi(x)’s as well. It is well known that a minimal set
of relations among the generators of a Weyl group are of the
form (sisj)mij 5 1. If W is the Weyl group of a semisimple Lie
algebra, then the only possibilities for mij are 2, 3, 4, or 6.
PROPOSITION 3.1 (sections 1, 4, and 6 of ref. 5). Given any

Weyl group of a semisimple Lie algebra, the Yang–Baxter oper-
ators satisfy the following Yang–Baxter equations:

hi(x)hj(y) 5 hj(y)hi(x). if (sisj)2 5 1, [3.4]

hi(x)hj(x 1 y)hi(y)

5 hj(y)hi(x 1 y)hj(x) if (sisj)3 5 1, [3.5]

hi(x)hj(x 1 y)hi(x 1 2y)hj(y)

5 hj(y)hi(x 1 2y)hj(x 1y)hi(x) if (sisj)4 5 1, [3.6]

and

hi(x)hj(3x 1 y)hi(2x 1 y)hj(3x 1 2y)hi(x 1 y)hj(y)

5 hj(y)hi(x 1 y)hj(3x 1 2y)hi(2x 1 y)hj(3x 1 y)hi(x)

if (sisj)6 5 1. [3.7]

It is well known (ref. 6, p. 14) that the set of roots
{sb1sb2 z z z sbk21abk : 1 # k # p} is equal to D1 ù vD2, hence
independent of the choice of reduced word. Next we define a
family of polynomials which are closely related to this set.
Definition: For any v [ W and any reduced word a 5

a1a2 z z z ap for v, define a root polynomial for a in the nil-
Coxeter algebra ! by

Ra 5 P
i51

p

hai~sa1sa2 z z z sai21aai!. [3.8]

For example, if the root system is of type A2, the Weyl group
is the symmetric group, S3. Let a1 and a2 be the simple roots.
For i 5 1 or 2, siai 5 2ai and siaj 5 a1 1 a2 for i different
from j. The word 121 is a reduced word of the permutation [3,
2, 1] (written in one-line notation). Then R121 is given by

R121 5 ~1 1 a1u1!~1 1 s1a2u2!~1 1 s1s2a1u2! [3.9]

5 1 1 ~a1 1 a2!~u@2,1,3# 1 u@1,3,2#! 1 ~a1
2 1 a1a2!u@2,3,1#

1 ~a1a2 1 a2
2!u@3,1,2# 1 ~a1

2a2 1 a1a2
2!u@3,2,1#. [3.10]

In fact, we show in the next theorem that Ra for a [ R(v)
depends only on the Weyl group element v and not on the

uiujuiuj z z z 5

mij factors

ujuiujui z z z for iÞj

mij factors
[3.1]         
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choice of reduced word. Therefore, we can define the root
polynomial for v, Rv to be Ra for any a [ R(v).
THEOREM 2. For any v [ W, choose any reduced word a 5

a1a2 z z z ap [ R(v), then

Rv 5 P
i51

p

hai(sa1sa2 z z z sai21aai) [3.11]

is well defined.
Independently, J. Stembridge has shown that this theorem

holds for all Coxeter groups (7). His proof does not depend on
case-by-case computations.
Proof: One can easily verify that for any position i,

Ra1a2 z z z ap 5 Ra1 z z z ai~sa1 z z z saiRai11 z z z ap!, [3.12]

since (1 1 sa1 z z z s i z z z s ak21
akuk) 5 sa1 z z z sai(1 1

si11 z z z sk21akuk). Hence, the problem is reduced to showing
that Rs 5 Rs9, where s 5 ij . . . and s9 5 ji . . . with l(s) 5 l(s9)
5 2, 3, 4, or 6. The proof follows from Proposition 3.1 applied
to the different possibilities for s and s9. h

Section 4. Orbit Value Formula

Let v [ W and fix a reduced word b1b2 . . . bp [ R(v). Recall
that the roots in the set D1 ù vD2 are given by {sb1sb2 z z z
sbi21abi : i # i # p}. In other words, for each initial sequence
of the chosen reduced word, sb1sb2 z z z sbj21abj is a positive root
in the set D1 ù vD2. Associate a scalar to the jth root by
evaluating it at the fixed orbit point o,

rb~j! 5 rb1b2 z z z bp~j! 5 sb1sb2 z z z sbj21abj~o!. [4.1]

Let pv be the scalar obtained as follows,

pv 5 P
g[D1ùvD2

g~o!. [4.2]

Note that pv is equal to the product rb(1)rb(2) z z z rb(p).
THEOREM 3. Let v, w [ W and fix a reduced word b 5

b1b2 . . . bp for v. The orbit values of Kw are given by

Kw(ov) 5
1

pw
O

biibi2 z z z bik[R(w)
rb(i1)rb(i2) z z z rb(ik),

[4.3]

where rb(j) is defined by Eq. 4.1 and the sum is over all sequences
1 # i1 , i2 , . . . , ik # p such that bi1bi2 z z z bik [ R(w).
Furthermore, the sum in Eq. 4.3 is independent of the choice of
b [ R(v).
Proof: First, note that the sum in Eq. 4.3 is the coefficient of

uw in the root polynomial Rv from Section 3. It was shown in
Theorem 2 that Rv is well defined for any choice of reduced
word. Therefore, the coefficient of uw inRv is also independent
of our choice of reduced word for v.
Second, we show that Eq. 4.3 holds by decreasing induction

on the length of w. For the longest element w0 [ W we know
Kw0(ow0) 5 1 and Kw0(ov) 5 0 for all v [ W such that l(v) ,

l(w0). This agrees with Eq. 4.3, since for any b 5 b1b2 z z z bp [
R(w0), there is at most one term in the sum and pw5 rb(1)rb(2)
z z z rb(p). Therefore, we can assume by induction that Eq. 4.3
holds for all u [W such that l(u) . l(w). The proof follows by
Corollary 2.3 and the inductive hypothesis. h
COROLLARY 4.1. The value pwKw(ov) is a nonnegative integer

provided ai(o) is a positive integer for each simple root ai.
The following corollaries are simple consequences of The-

orem 3. They were also shown in ref. 2.
COROLLARY 4.2. The orbit values Kw(ov) and Kw(ovsi) are

equal if and only if l(w) , l(wsi).

COROLLARY 4.3. The orbit value Kw(ov) is different from 0 if
and only if w # v in the Bruhat order.

Section 5. Determination of the Cup Product in the
Cohomology Ring of GyB

In this section the main application of Theorem 3 is described.
The highest homogeneous component of a Kostant polynomial
represents a Schubert class. Therefore, the highest homoge-
neous component of the product of Kostant polynomials
represents the product of Schubert classes. It will be shown that
one can find the expansion of products of Kostant polynomials
in the basis of Kostant polynomials by using the vectors of orbit
values. This method for computing the cup product is much
more efficient than previously known techniques, which in-
volved multiplying polynomials and possibly reducing modulo
the ideal of invariants. Also, since it extends to the exceptional
root systems, it is more complete than the existing theory of
Schubert polynomials defined by Lascoux and Schützenberger
(8); see also refs. 4 and 9–11 and many more.
Fix a total order on the Weyl group elements which respects

the partial order determined by length. We define the orbit
value vector Vw in ZuWu to be the vector with entry Kw(ov) in the
vth component indexed by the chosen total order. For example,
the orbit value vector for the longest element will be (0, 0, . . . ,
0, 1). Note the set {Vw : w[W} is a basis for ZuWu, since Kw(ow)
Þ 0 and Kw(ov) 5 0 for all v , w in the chosen total order.
LEMMA 5.1. Let Vu z Vv be the coordinate-wise product of

vectors. If

VuzVv 5 O puvw Vw, [5.1]

then the product of Kostant polynomials KuKv (modulo the ideal
J of all polynomials which vanish on the orbit of o) expands with
the same coefficients,

KuzKv 5 O puvw Kw ~mod J!. [5.2]

Furthermore, if l(w) 5 l(u) 1 l(v), the coefficients puv
w are

constants which are independent of the choice of orbit point
provided ai(o) is positive for each i.
COROLLARY 5.2. For u, v, w[W, the coefficient puv

w from Eqs.
5.1 and 5.2 can be computed recursively by

puvw 5 Ku(ow)Kv(oW) 2 O
t,w
puvt Kt(ow). [5.3]

It is easy to compute the expansion of any vector in ZuWu into
the sum of the vectors Vw because of their upper triangular
form. The expansion involves only linear algebra. Therefore, I
propose one compute the coefficients cuvw in the expansion of
SuSv 5 (cuvw Sw by computing VuVv 5 (puvw Vw.
COROLLARY 5.3. For w[W such that l(w)5 l(u)1 l(v), the

structure constant cuvw is equal to puvw pupvpw
21.

Proof: This follows from Lemma 5.1 and Proposition 2.2. M
Kostant and Kumar (2) have shown that the coefficients puvw

in Lemma 5.1 can also be completely determined as coeffi-
cients in a product of matrices that depend only on the matrix
of orbit values. LetD5 [duv] be the matrix with entries indexed
by u, v [W, and the entry duv is defined§ to be the orbit value
puKu(ov), computed by either Eq. 2.7 or Eq. 4.3.
PROPOSITION 5.4 (ref. 2). Fix u [ W. Let Du be the diagonal

matrix with duv along the diagonal. Let Pu be the matrix of
coefficients [puvw ] from Eq. 5.1. Then

Pu 5 DzDuzD21. [5.4]

§Note that our duv corresponds with du21v21 in ref. 2.
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This proposition beautifully demonstrates the relationship
between the cup product of the cohomology ring of GyB and
the D matrix.

Section 6. Concluding Remarks

While formula 4.3 is presented only for the finite case (i.e., G
semisimple), the formula for the orbit values is in fact true for
all Kac–Moody Lie algebras. We have shown that the formula
is independent of the choice of reduced word for any element
of the Weyl group of a Kac–Moody algebra. The given proof
of Theorem 3 does not extend to the infinite case because it
depends on the existence of a top element. However, S. Kumar
has shown that there is an analog for Corollary 2.3 which
computes the orbit values starting from the identity and going
up in length. He then proves the orbit value formula in the
Kac–Moody case, using this recurrence and theorems from ref.
2. The complete version of the paper will contain an abstract
outlining the details of Kumar’s proof.
The Kostant polynomials and the double Schubert polyno-

mials defined by Lascoux and Schützenberger (3) are closely
related in the case of SLn. LetSw(X, Y) be the double Schubert
polynomial indexed by w on the two alphabets, X and Y. Then
Kw(x1, x2, . . . , xn) 5 (1ypw)Sw(X, o). This fact can be proven
by using the combinatorial interpretation for the terms in a
double Schubert polynomial defined by Fomin and Kirillov
(12). Unfortunately, the Kostant polynomials for the other
classical groups do not appear to be related to the double
Schubert polynomials as defined by Fulton (11).
It is well known that the structure constants for the product

of Schubert classes are nonnegative integers. In fact, the
coefficients in the entire Pu matrix appear to be nonnegative

integers, provided the orbit point is chosen so that each ai(o)
is a positive integer. Can one give formulas analogous to 4.3 for
these coefficients that would prove they are nonnegative
integers? Note, the D and Du matrices are also composed of
nonnegative integers. However, the matrix D21 contains neg-
ative rational numbers.
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